Market and Technology Assessment

U.S. Department of Energy Workshop on Standards for Distribution Transformers November 1, 2000

Lance N. McCold
Oak Ridge National Laboratory

Market and Technology Assessment Provides Data in Support of the Standards Setting Process

- Develop a detailed understanding of the
 - Design
 - Manufacture
 - Distribution
 - Application

of distribution transformers

Provide background information for future analyses

The Market and Technology Assessment Provides Input To:

- Screening analysis
- Engineering analysis
- Life-cycle cost analysis
- National energy savings
- Manufacturer impact analysis
- Utility impacts analysis
- Net national employment impacts

We Have Three Issues of Special Concern Related to the M&TA

- Identification of Product Classes
- Selection of Baseline Models
- Determination of cost—price relationship

The Types and Uses of Distribution Transformers May Require Defining Several *Product Classes*

- Distribution transformers may be separated into product classes if capacity or other performance-related features inherently affect efficiency and warrant a separate standard
- Because product features may affect the cost vs. efficiency relationship, separate efficiency standards will be considered for product classes

The Department Desires to Use the Fewest Product Classes Possible

NEMA TP1 uses 73 product classifications

 Each product class requires separate analysis

Several Distribution Transformer Product Classifications Are in Use

- Capacity (kVA)
- Insulation system (liquid vs. dry)
- Number of phases (single vs. three)
- Voltage level (low vs. medium)
- Temperature-rise categories
- Pole-mount vs. pad-mount
- Encapsulated vs. ventilated
- Harmonics (K-factor) types

Transformer Usage May Also Give Rise to Product Classifications

- Different types or capacities may be loaded differently, e.g.:
 - Large vs. small capacity
 - Three-phase units usually serve motor loads
- Outdoor applications and high primary voltages require higher insulation levels
- Harsh environments...
- Other?

There Are Many Questions That Relate to Product Class

- Should encapsulated and ventilated be required to meet the same efficiency levels?
- In what applications are liquid- and dry-type transformers interchangeable?
- Should medium voltage transformers be divided into two or more classes by primary voltage?
- Under what conditions can scaling rules such as the 0.75 power rule for losses, costs, etc. be applied?

- Should pad-mount and polemount transformers meet the same efficiency standards?
- Do "K-factor" transformers warrant a product class of their own?
- Do differences in loading of large and small transformers affect whether product classes should be created based on capacity?
- How much does high BIL increase transformer losses?

Decisions on Product Class Have a Specific Logic

- Does a transformer characteristic or feature inherently affect efficiency?
- What utility does the feature provide?
- Why is the feature valuable or important?
- Can a scaling or correction factor be used to adjust efficiency for the presence of the feature?

A Baseline Model Is Needed for Each Product Class

- The baseline is the model against which efficiency levels will be compared
- The baseline model is a typical, low efficiency model in the marketplace
- The baseline model is used as a point of comparison in the life-cycle cost and payback analyses — benefits and costs are estimated by comparison with the baseline model

The Department Seeks Comment on the Baseline Models

- For low-voltage transformers, 150-degree rise units may be the baseline models
- For medium-voltage transformers, lowcost (i,.e., unevaluated) models may be used

Are there better choices?

Prices, Costs, and Markups are Used in Several Analyses

- The engineering analysis examines the costs of improved transformer efficiency
- The price-cost relationship relates the costs of efficiency improvements to price paid by owner
- Transformer price is used in the life-cycle cost and national impacts analyses
- Transformer cost and price is used in the manufacturer impacts analyses

Neither Price nor Markup Are Clear for Distribution Transformers

- The actual transformer price paid is often much less than catalog price
- Distributor markups affect price
- The contractor who installs a transformer may add a markup
- The price of the transformer may be bundled with other parts of the electrical system

The Department May Use Several Approaches to Determine Markups

- For commodity-like transformers we anticipate contacting distributors
- For utility transformers we anticipate relying on information from manufacturers
- For other non-utility transformers we anticipate collecting information from manufacturers, distributors, and electrical contractors/designers/consultants

The Department Seeks Comments on Transformer Markup

- Suggestions on how to collect markup information
- Manufacturers, distributors, contactors, utilities who can provide markup information
- Other approaches to collect price and cost information